GLOBAL CLASS FIELD THEORY, A VERY BRIEF SUMMARY

YIHANG ZHU

Let K be a number field. Class field theory provides understanding of the abelian extensions of K, in terms of arithmetic invariants of K itself. For simplicity, in the following we assume K is totally imaginary, i.e. it does not admit any embedding into \mathbb{R} .

1. FORMULATION USING IDEALS

Recall: Let L/K is a finite Galois extension, $\mathfrak p$ a prime of K and $\mathfrak P$ a prime of L dividing $\mathfrak p$. Suppose $\mathfrak P$ is unramified. (Since L/K is Galois, this is a property of $\mathfrak p$.) Then we can define the Frobenius element $\sigma = \operatorname{Frob}_{\mathfrak P} = (\mathfrak P, L/K) \in \operatorname{Gal}(L/K)$, uniquely characterized by the condition that $\sigma(x) \equiv x^{\mathrm{N}\,\mathfrak p} \mod \mathfrak P$, for any $x \in \mathcal O_L$, where $\mathrm{N}\,\mathfrak p = |\mathcal O_K/\mathfrak p|$. When $\mathfrak P'$ is another prime of L above $\mathfrak p$, the elements $\operatorname{Frob}_{\mathfrak P}$ and $\operatorname{Frob}_{\mathfrak P'}$ are conjugate in $\operatorname{Gal}(L/K)$. In particular, if L/K is abelian, we define $\operatorname{Frob}_{\mathfrak P} = (\mathfrak p, L/K)$ to be $\operatorname{Frob}_{\mathfrak P}$ for $\mathfrak P$ as before. Note again that $(\mathfrak p, L/K)$ is well defined only for $\mathfrak p$ unramified in L.

Definition 1.1. A modulus of K is a formal expression $\mathfrak{m} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_k^{e_k}$, where \mathfrak{p}_i are prime ideals of \mathcal{O}_K and $e_i \in \mathbb{Z}_{>0}$. One may also think of \mathfrak{m} as the integral ideal of \mathcal{O}_K defined by the product. The notion of one modulus dividing another, and that of a prime ideal dividing a modulus, are defined in the evident way. The trivial modulus (i.e. empty product) will be denoted by 1.

Definition 1.2. Let $I_K^{\mathfrak{m}}$ be the free abelian group generated by primes of K not dividing \mathfrak{m} , regarded as a subgroup of the group I_K of fractional ideals of K.

Definition 1.3. For a modulus $\mathfrak{m} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_k^{e_k}$, let

$$K_{\equiv 1(\mathfrak{m})} = \left\{ \alpha \in K^{\times} | \alpha \in 1 + \mathfrak{p}_{i}^{e_{i}} \mathcal{O}_{K,(\mathfrak{p}_{i})}, 1 \leq i \leq k \right\}.$$

Remark 1.4. $K_{\equiv 1(\mathfrak{m})}$ is a subgroup of K^{\times} . The condition $\alpha \in 1 + \mathfrak{p}_i^{e_i} \mathcal{O}_{K,(\mathfrak{p}_i)}$ is equivalent to requiring the power of \mathfrak{p}_i appearing in the prime factorization of the fractional ideal $(\alpha - 1)\mathcal{O}_K$ to be $\geq e_i$.

Definition 1.5. Let $\alpha \in K_{\equiv 1(\mathfrak{m})}$, then $\alpha \mathcal{O}_K$ is a fractional ideal belonging to $I_K^{\mathfrak{m}}$, so we have a group homomorphism $K_{\equiv 1(\mathfrak{m})} \to I_K^{\mathfrak{m}}$. Let $\mathrm{Cl}_{\mathfrak{m}}$ be the cokernel, called the Ray class group of \mathfrak{m} .

Remark 1.6. When $\mathfrak{m}=1$ is the trivial modulus, $\mathrm{Cl}_{\mathfrak{m}}=\mathrm{Cl}(\mathcal{O}_K)$ is the usual class group of \mathcal{O}_K .

Theorem 1.7. Any ray class group $Cl_{\mathfrak{m}}$ is finite.

Let L/K be a finite abelian extension. Suppose \mathfrak{m} is a modulus of K divisible by all the primes ramified in L. Then we can uniquely define a map $I_K^{\mathfrak{m}} \to \operatorname{Gal}(L/K)$ by mapping a prime $\mathfrak{p} \in I_K^{\mathfrak{m}}$ to $(\mathfrak{p}, L/K)$. This map is called the Artin map.

Definition 1.8. Let L/K be a finite abelian extension. We say a modulus \mathfrak{m} of K is admissible for L/K if the following are satisfied:

- (1) All the primes of K that are ramified in L divide \mathfrak{m} .
- (2) The Artin map $I_K^{\mathfrak{m}} \to \operatorname{Gal}(L/K)$ factors through $\operatorname{Cl}_{\mathfrak{m}}$.

A priori there is no reason that condition (2) should be satisfied by any modulus. However we have

Theorem 1.9 (Artin reciprocity). For any finite abelian extension L/K, there exists a modulus of K admissible for L/K. Moreover, this modulus can be chosen such that it is divisible only by the ramified primes.

Remark 1.10. Artin reciprocity is a highly nontrivial statement, revealing relations between the Frobenius elements of various primes. It is one of the main theorems of class field theory.

Let L/K be a finite abelian extension. Let $\mathfrak{m}, \mathfrak{m}'$ be two moduli of K. It is clear from the definition that if \mathfrak{m} is admissible for L/K and $\mathfrak{m}|\mathfrak{m}'$, then \mathfrak{m}' is also admissible.

Definition 1.11. Let L/K be a finite abelian extension. Define the conductor $\mathfrak{f}_{L/K}$ of L/K to be the admissible modulus with minimal exponents among admissible moduli. Thus a modulus \mathfrak{m} of K is admissible for L/K if and only if $\mathfrak{f}_{L/K}|\mathfrak{m}$.

Remark 1.12. By the last statement of Theorem 1.9, a prime of K is ramified in L if and only if it divides $\mathfrak{f}_{L/K}$.

Let \mathfrak{m} be a modulus of K. For a finite abelian extension L/K, define $I_L^{\mathfrak{m}} := I_L^{\mathfrak{n}}$, where \mathfrak{n} is the modulus of L equal to the product of all the primes of L above primes of K dividing \mathfrak{m} . We have a norm map $N_{L/K}: I_L^{\mathfrak{m}} \to I_K^{\mathfrak{m}}$, defined by mapping a prime \mathfrak{P} to $\mathfrak{p}^{f(\mathfrak{P}/\mathfrak{p})}$, where \mathfrak{p} is the prime of K under \mathfrak{P} and $f(\mathfrak{P}/\mathfrak{p})$ is the degree of the residue extension.

Theorem 1.13 (Reciprocity isomorphism). Let L/K be a finite abelian extension. Let \mathfrak{m} be any admissible modulus. Then the Artin map $\mathrm{Cl}_{\mathfrak{m}} \to \mathrm{Gal}(L/K)$ is surjective, with kernel equal to the image of $\mathrm{N}_{L/K}(I_L^{\mathfrak{m}})$ in $\mathrm{Cl}_{\mathfrak{m}}$. In other words, we have the following reciprocity isomorphism induced by the Artin map

$$\operatorname{Cl}_{\mathfrak{m}}/\operatorname{N}_{L/K}(I_L^{\mathfrak{m}})=I_K^{\mathfrak{m}}/\operatorname{N}_{L/K}(I_L^{\mathfrak{m}})K_{\equiv 1(\mathfrak{m})} \stackrel{\sim}{\longrightarrow} \operatorname{Gal}(L/K).$$

Theorem 1.14 (Existence theorem). Let \mathfrak{m} be any modulus of K. There exists a unique finite abelian extension L/K for which \mathfrak{m} is admissible, and such that the Artin map induces an isomorphism

$$\operatorname{Cl}_{\mathfrak{m}} \xrightarrow{\sim} \operatorname{Gal}(L/K).$$

The extension L is called the ray class field of \mathfrak{m} , denoted by $K_{\mathfrak{m}}$.

In the rest of this section we find equivalent ways of characterizing the ray class field of a modulus \mathfrak{m} . We first introduce the so-called "split prime principle", whose proof is independent of class field theory.

Definition 1.15. Let L/K be a finite Galois extension. Let Spl(L/K) be the set of primes of K that are split in L.

Lemma 1.16 (split prime principle). Let L_1/K , L_2/K be two finite Galois extensions. TFAE.

- (1) $L_1 \supset L_2$.
- (2) $\operatorname{Spl}(L_1/K) \subset \operatorname{Spl}(L_2/K)$.
- (3) For some finite set S of primes of K, we have $\mathrm{Spl}(L_1/K) S \subset \mathrm{Spl}(L_2/K) S$.

Remark 1.17. The implications $(1) \Rightarrow (2) \Rightarrow (3)$ are elementary. In (3), we can also replace S by a set of primes of density zero, for a suitable notion of density.

The following proposition characterizes the ray class field of a modulus.

Proposition 1.18. Let \mathfrak{m} be a modulus of K. The ray class field $K_{\mathfrak{m}}/K$ satisfies the following:

- (1) Let S be the set of the prime divisors of \mathfrak{m} . Then $\mathrm{Spl}(K_{\mathfrak{m}}/K) S = \{ principal \ primes \ generated \ by \ elements \ of \ K_{\equiv 1(\mathfrak{m})} \}$.
- (2) For any finite abelian extension L/K, we have $\tilde{L} \subset K_{\mathfrak{m}}$ if and only if $\mathfrak{f}_{L'/K}|\mathfrak{m}$.

Proof. We use the following observation: Let L/K be a finite abelian extension. If \mathfrak{p} is unramified in L, then \mathfrak{p} is split in L if and only if $(\mathfrak{p}, L/K) = 1$.

- (1) This follows from the admissibility of \mathfrak{m} for $K_{\mathfrak{m}}/K$ and the injectivity of the Artin map $\mathrm{Cl}_{\mathfrak{m}} \to \mathrm{Gal}(K_{\mathfrak{m}}/K)$.
- (2) By hypothesis \mathfrak{m} is admissible for $K_{\mathfrak{m}}/K$. If $L \subset K_{\mathfrak{m}}$, it is easy to check that \mathfrak{m} is also admissible for any L/K, hence $\mathfrak{f}_{L/K}|\mathfrak{m}$. Conversely, suppose $\mathfrak{f}_{L/K}|\mathfrak{m}$, i.e. \mathfrak{m} is admissible for L/K. We prove $L \subset K_{\mathfrak{m}}$ by proving $\mathrm{Spl}(K_{\mathfrak{m}}/K) S \subset \mathrm{Spl}(L/K) S$. Let $\mathfrak{p} \in \mathrm{Spl}(K_{\mathfrak{m}}/K) S$. By (1) we have $\mathfrak{p} = \alpha \mathcal{O}_K$, for some $\alpha \in K_{\equiv 1(\mathfrak{m})}$. But then $(\mathfrak{p}, L/K) = 1$ since \mathfrak{m} is admissible for L/K.

Remark 1.19. By Lemma 1.16, property (1) in the proposition uniquely characterizes the extension $K_{\mathfrak{m}}/K$. Obviously property (2) also uniquely characterizes $K_{\mathfrak{m}}$. We have actually proved the uniqueness of $K_{\mathfrak{m}}$ stated in Theorem 1.14. In practice, we can check if a given finite abelian extension is the ray class field of a modulus by checking (1). Note that the characterization (2) can also be stated as: A modulus \mathfrak{m} is admissible for a finite abelian extension L/K if and only if $L \subset K_{\mathfrak{m}}$.

Remark 1.20. The conductor of $K_{\mathfrak{m}}/K$ need not be equal to \mathfrak{m} in general.

Example 1.21. Take $\mathfrak{m}=1$ to be the trivial modulus. Since \mathfrak{m} is admissible for $K_{\mathfrak{m}}/K$, we see that $K_{\mathfrak{m}}/K$ is unramified everywhere. Moreover, if L/K is a finite abelian extension unramified everywhere, then $\mathfrak{f}_{L/K}=1$. Hence by characterization (2), $L\subset K_{\mathfrak{m}}$. Thus $K_{\mathfrak{m}}$ is the maximal unramified finite abelian extension, i.e. the Hilbert class field H of K. The reciprocity isomorphism in Theorem 1.14 reads: $\mathrm{Cl}(\mathcal{O}_K) \xrightarrow{\sim} \mathrm{Gal}(H/K)$.

Example 1.22. Take $K=\mathbb{Q}$. Since \mathbb{Q} is not totally imaginary, we need to modify our theory slightly. Now a modulus is either a positive integer m or a formal product of m with the symbol ∞ . In the former case all the definitions are the same. If $\mathfrak{m}=m\infty$, define $\mathbb{Q}_{\equiv 1(\mathfrak{m})}:=\left\{\alpha\in\mathbb{Q}_{\equiv 1(m)}|\alpha>0\right\}$, $I^{\mathfrak{m}}_{\mathbb{Q}}:=I^{\mathfrak{m}}_{\mathbb{Q}}$, $\mathrm{Cl}_{\mathfrak{m}}=I^{\mathfrak{m}}_{\mathbb{Q}}/\mathbb{Q}_{\equiv 1(\mathfrak{m})}$. We have $\mathrm{Cl}_m\cong(\mathbb{Z}/m\mathbb{Z})/\left\{\pm 1\right\}$, $\mathrm{Cl}_{m\infty}=\mathbb{Z}/m\mathbb{Z}$. Let L/\mathbb{Q} be a finite abelian extension, we say $\mathfrak{m}=m\infty$ is admissible for L/K if all the primes not dividing m are unramified in L, and the map $I^{\mathfrak{m}}_{\mathbb{Q}}\to\mathrm{Gal}(L/K)$ factors through $\mathrm{Cl}_{\mathfrak{m}}$. We say $\mathfrak{m}=m$ is admissible

for L/K, if all the primes not dividing m are unramified in L, and the place ∞ is also unramified in L (i.e. the embedding $\mathbb{Q} \hookrightarrow \mathbb{R}$ extends to an embedding $L \hookrightarrow \mathbb{R}$), and the map $I^{\mathfrak{m}}_{\mathbb{Q}} \to \operatorname{Gal}(L/K)$ factors through $\operatorname{Cl}_{\mathfrak{m}} \to \operatorname{Gal}(L/K)$. Then the main theorems 1.9, 1.13, 1.14 remain true. (In the last statement of Theorem 1.9, we interpret "ramified primes" as also including ∞ if L/\mathbb{Q} is ramified at ∞ .)

The ray class fields are just the cyclotomic fields. We have $\mathbb{Q}_{m\infty} = \mathbb{Q}(\zeta_m)$, $\mathbb{Q}_m = \mathbb{Q}(\zeta_m + \zeta_m^{-1}) = \mathbb{Q}_{m\infty} \cap \mathbb{R}$. The reciprocity isomorphisms for these are just the usual isomorphisms:

$$\mathbb{Z}/m\mathbb{Z} \stackrel{\sim}{\longrightarrow} \operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q}),$$

$$(\mathbb{Z}/m\mathbb{Z})/\{\pm 1\} \xrightarrow{\sim} \operatorname{Gal}(\mathbb{Q}(\zeta_m + \zeta_m^{-1})/\mathbb{Q}).$$

Let L/\mathbb{Q} be any finite abelian extension. We have $L \subset \mathbb{Q}_{\mathfrak{f}_{L/\mathbb{Q}}}$. This statement is the classical Kronecker-Weber theorem.

2. Formulation using ideles

Let K be a totally imaginary number field. Define $J_{K,\infty} := \prod_{\sigma} \mathbb{C}^{\times}$, where σ runs through a set of representatives of the set of embeddings $K \hookrightarrow \mathbb{C}$ modulo complex conjugation. $J_{K,\infty}$ is a topological group with the natural product topology.

Let \mathfrak{p} be a prime ideal of \mathcal{O}_K . It gives rise to a discrete valuation $v_{\mathfrak{p}}: K^{\times} \to \mathbb{Z}$, sending α to the exponent of \mathfrak{p} appearing in the prime factorization of the fractional ideal $\alpha \mathcal{O}_K$. Choose a real number $0 < \epsilon < 1$, we define an absolute value $|\cdot|_{\mathfrak{p}}$ on K, setting $|\alpha| = \epsilon^{v_{\mathfrak{p}}(\alpha)}$ for $\alpha \neq 0$ and |0| = 0. Usually we take $\epsilon = \#\mathcal{O}_K/\mathfrak{p}$, but this is not essential. We can take the completion of K with respect to this absolute value, to get a field $K_{\mathfrak{p}}$. The discrete valuation $v_{\mathfrak{p}}$ extends to a discrete valuation on $K_{\mathfrak{p}}$. Define $\mathcal{O}_{\mathfrak{p}} = \{\alpha \in K_{\mathfrak{p}} | v_{\mathfrak{p}}(\alpha) \geq 0\}$.

Consider the abelian group $\prod_{\mathfrak{p}} K_{\mathfrak{p}}^{\times}$, where \mathfrak{p} runs through all the prime ideals of \mathcal{O}_{K} . Consider its subgroup $J_{K}^{\infty} := \left\{ (x_{\mathfrak{p}}) \in \prod_{\mathfrak{p}} K_{\mathfrak{p}}^{\times} | x_{\mathfrak{p}} \in \mathcal{O}_{\mathfrak{p}}^{\times} \text{ a.a. } \mathfrak{p} \right\}$. Here "a.a." means "for almost all", i.e. except for finitely many. We can define a topology on J_{K}^{∞} by claiming that open sets are of the form $\prod_{\mathfrak{p} \in S} V_{\mathfrak{p}} \times \prod_{\mathfrak{p} \notin S} \mathcal{O}_{\mathfrak{p}}^{\times}$, where S is a finite set of primes, and $V_{\mathfrak{p}}$ is an open subset of $\mathcal{O}_{\mathfrak{p}}^{\times}$ (the latter equipped with the topology defined by $|\cdot|_{\mathfrak{p}}$.)

Exercise 2.1. Check that this defines a topology on J_K^{∞} , and J_K^{∞} is a topological group. (namely, multiplication and inversion are continuous.)

Let $\mathfrak{m} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_k^{e_k}$ be a modulus of K, define $U_{\mathfrak{m}}^{\infty} := \prod_{\mathfrak{p} \mid m} \mathcal{O}_{\mathfrak{p}}^{\times} \times \prod_{i=1}^k (1 + \mathfrak{p}_i^{e_i} \mathcal{O}_{\mathfrak{p}_i})$. This is a subgroup of J_K^{∞} . When \mathfrak{m} varies, $U_{\mathfrak{m}}^{\infty}$ form a basis of open neighborhoods of $1 \in J_K^{\infty}$.

Define $J_K := J_{K,\infty} \times J_K^{\infty}$, equipped with the product topology. It is a topological group, called the group of ideles² of K. We have a diagonal embedding $K^{\times} \hookrightarrow J_K$. The image is a discrete subgroup, and the quotient J_K/K^{\times} , called the idele class group, is a Hausdorff locally compact topological group.

¹Define the distance between $\alpha, \beta \in K$ to be $|\alpha - \beta|$, then $K_{\mathfrak{p}}$ is just the completion of the metric space K.

 $^{^2{\}rm The~concept}$ and the terminology "idèles" were introduced by Chevalley. "Idèles" was meant to be the abbreviation of "éléments idéal"

We have a group homomorphism

$$\mathrm{ideal}: J_K \to I_K, x = (x_\sigma, x_\mathfrak{p}) \mapsto \prod_\mathfrak{p} \mathfrak{p}^{v_\mathfrak{p}(x_\mathfrak{p})}.$$

Let L/K be a finite Galois extension. For any prime \mathfrak{P} of L over \mathfrak{p} of K, the field extension $L_{\mathfrak{P}}/K_{\mathfrak{p}}$ is finite Galois, of degree $e(\mathfrak{P}/\mathfrak{p})f(\mathfrak{P}/\mathfrak{p})$. We define the homomorphism

$$\mathrm{N}_{L/K}:J_L^\infty\to J_K^\infty,(x_{\mathfrak{P}})_{\mathfrak{P}}\mapsto (\prod_{\mathfrak{P}\mid\mathfrak{p}}\mathrm{N}_{L_{\mathfrak{P}}/K_{\mathfrak{p}}}\,x_{\mathfrak{P}})_{\mathfrak{p}}.$$

Since K is by assumption totally imaginary, the complex embeddings of K and those of L are in bijection. We define $N_{L/K}:J_{L,\infty}\to J_{K,\infty}$ to be the natural isomorphism. Combining these two maps we define $N_{L/K}:J_L\to J_K$. Let $K^{\rm ab}$ be the maximal abelian extension of K (inside a fixed algebraic closure). We equip ${\rm Gal}(K^{\rm ab}/K)$ with the profinite topology. The following is the main theorem of the class field theory of K, formulated in the idelic language.

Theorem 2.2. There exists a canonical homomorphism $\Psi_K: J_K \to \operatorname{Gal}(K^{\operatorname{ab}}/K)$. It is surjective and continuous, and satisfies the following.

- (1) (Artin reciprocity) Ψ_K is trivial on the image of the diagonal embedding $K^{\times} \hookrightarrow J_K$.
- (2) Let L/K be a finite abelian extension. Let $\Psi_{L/K}: J_K \to \operatorname{Gal}(L/K)$ be the composition of Ψ_K with the natural map $\operatorname{Gal}(K^{\operatorname{ab}}/K) \to \operatorname{Gal}(L/K)$. Let \mathfrak{m} be the modulus equal to the product of the primes of K ramified in L. For any $x \in J_K$ with $\operatorname{ideal}(x) \in I_K^{\mathfrak{m}}$, we have $\Psi_{L/K}(x) = (\operatorname{ideal}(x), L/K)$.
- (3) (Reciprocity isomorphism) Let L/K be a finite abelian extension. $\Psi_{L/K}$ induces an isomorphism $J_K/K^{\times} \operatorname{N}_{L/K}(J_L) \xrightarrow{\sim} \operatorname{Gal}(L/K)$.
- (4) (Existence theorem) Any open subgroup of finite index of J_K/K^{\times} arises as the kernel of $\psi_{L/K}$ for a unique finite abelian extension L/K.

Remark 2.3. From (2) we easily see that $\Psi_K: J_K \to \operatorname{Gal}(K^{\operatorname{ab}}/K)$ is trivial on $J_{K,\infty}$. Thus statements (1)-(3) remain true if we replace J_K by J_K^{∞} . The role $J_{K,\infty}$ plays in the theory is that it gives the correct topology on J_K for (4) to hold. In fact, K^{\times} is dense in J_K^{∞} , so the only open subgroup of J_K^{∞}/K^{\times} is itself, and we don't get the analogous statement to (4) if we only work with J_K^{∞} . Moreover, when K is not necessarily totally imaginary, we need $J_{K,\infty}$ to control the ramification of the real embeddings.

We conclude with a discussion of the ray class fields in the idelic language. Let \mathfrak{m} be a modulus of K. Let $U_{\mathfrak{m}} = J_{K,\infty} \times U_{\mathfrak{m}}^{\infty} = J_{K,\infty} \times \prod_{\mathfrak{p} \mid \acute{\mathfrak{m}}} \mathcal{O}_{\mathfrak{p}}^{\times} \times \prod_{i=1}^{k} (1+\mathfrak{p}_{i}^{e_{i}}\mathcal{O}_{\mathfrak{p}_{i}})$. It is a subgroup of J_{K} . The image of $U_{\mathfrak{m}}$ in J_{K}/K^{\times} is an open subgroup of finite index. In fact the map ideal : $J_{K} \to I_{K}$ induces an isomorphism $J_{K}/K^{\times}U_{\mathfrak{m}} \stackrel{\sim}{\longrightarrow} \operatorname{Cl}_{\mathfrak{m}}$. The ray class field $J_{\mathfrak{m}}$ is the field corresponding to the image of $U_{\mathfrak{m}}$ in J_{K}/K^{\times} via (4) in Theorem 2.2.