
GLOBAL CLASS FIELD THEORY, A VERY BRIEF SUMMARY

YIHANG ZHU

LetK be a number �eld. Class �eld theory provides understanding of the abelian
extensions of K, in terms of arithmetic invariants of K itself. For simplicity, in the
following we assume K is totally imaginary, i.e. it does not admit any embedding
into R.

1. Formulation using ideals

Recall: Let L/K is a �nite Galois extension, p a prime of K and P a prime of L
dividing p. Suppose P is unrami�ed. (Since L/K is Galois, this is a property of p.)
Then we can de�ne the Frobenius element σ = FrobP = (P, L/K) ∈ Gal(L/K),
uniquely characterized by the condition that σ(x) ≡ xN p mod P, for any x ∈ OL,
where N p = |OK/p|. When P′ is another prime of L above p, the elements FrobP

and FrobP′ are conjugate in Gal(L/K). In particular, if L/K is abelian, we de�ne
Frobp = (p, L/K) to be FrobP for P as before. Note again that (p, L/K) is well
de�ned only for p unrami�ed in L.

De�nition 1.1. A modulus of K is a formal expression m = pe11 · · · p
ek
k , where pi

are prime ideals of OK and ei ∈ Z>0. One may also think of m as the integral
ideal of OK de�ned by the product. The notion of one modulus dividing another,
and that of a prime ideal dividing a modulus, are de�ned in the evident way. The
trivial modulus (i.e. empty product) will be denoted by 1.

De�nition 1.2. Let ImK be the free abelian group generated by primes of K not
dividing m, regarded as a subgroup of the group IK of fractional ideals of K.

De�nition 1.3. For a modulus m = pe11 · · · p
ek
k , let

K≡1(m) =
{
α ∈ K×|α ∈ 1 + peii OK,(pi), 1 ≤ i ≤ k

}
.

Remark 1.4. K≡1(m) is a subgroup of K×. The condition α ∈ 1 + peii OK,(pi) is
equivalent to requiring the power of pi appearing in the prime factorization of the
fractional ideal (α− 1)OK to be ≥ ei.

De�nition 1.5. Let α ∈ K≡1(m), then αOK is a fractional ideal belonging to ImK ,
so we have a group homomorphism K≡1(m) → ImK . Let Clm be the cokernel, called
the Ray class group of m.

Remark 1.6. When m = 1 is the trivial modulus, Clm = Cl(OK) is the usual class
group of OK .

Theorem 1.7. Any ray class group Clm is �nite.

Let L/K be a �nite abelian extension. Suppose m is a modulus of K divisible by
all the primes rami�ed in L. Then we can uniquely de�ne a map ImK → Gal(L/K)
by mapping a prime p ∈ ImK to (p, L/K). This map is called the Artin map.

1



2 YIHANG ZHU

De�nition 1.8. Let L/K be a �nite abelian extension. We say a modulus m of K
is admissible for L/K if the following are satis�ed:

(1) All the primes of K that are rami�ed in L divide m.
(2) The Artin map ImK → Gal(L/K) factors through Clm.

A priori there is no reason that condition (2) should be satis�ed by any modulus.
However we have

Theorem 1.9 (Artin reciprocity). For any �nite abelian extension L/K, there
exists a modulus of K admissible for L/K. Moreover, this modulus can be chosen
such that it is divisible only by the rami�ed primes.

Remark 1.10. Artin reciprocity is a highly nontrivial statement, revealing relations
between the Frobenius elements of various primes. It is one of the main theorems
of class �eld theory.

Let L/K be a �nite abelian extension. Let m,m′ be two moduli of K. It is
clear from the de�nition that if m is admissible for L/K and m|m′, then m′ is also
admissible.

De�nition 1.11. Let L/K be a �nite abelian extension. De�ne the conductor fL/K
of L/K to be the admissible modulus with minimal exponents among admissible
moduli. Thus a modulus m of K is admissible for L/K if and only if fL/K |m.

Remark 1.12. By the last statement of Theorem 1.9, a prime of K is rami�ed in L
if and only if it divides fL/K .

Let m be a modulus of K. For a �nite abelian extension L/K, de�ne ImL := InL,
where n is the modulus of L equal to the product of all the primes of L above primes
of K dividing m. We have a norm map NL/K : ImL → ImK , de�ned by mapping a

prime P to pf(P/p), where p is the prime of K under P and f(P/p) is the degree
of the residue extension.

Theorem 1.13 (Reciprocity isomorphism). Let L/K be a �nite abelian extension.
Let m be any admissible modulus. Then the Artin map Clm → Gal(L/K) is surjec-
tive, with kernel equal to the image of NL/K(ImL ) in Clm. In other words, we have
the following reciprocity isomorphism induced by the Artin map

Clm /NL/K(ImL ) = ImK/NL/K(ImL )K≡1(m)
∼−→ Gal(L/K).

Theorem 1.14 (Existence theorem). Let m be any modulus of K. There exists a
unique �nite abelian extension L/K for which m is admissible, and such that the
Artin map induces an isomorphism

Clm
∼−→ Gal(L/K).

The extension L is called the ray class �eld of m, denoted by Km.

In the rest of this section we �nd equivalent ways of characterizing the ray class
�eld of a modulus m. We �rst introduce the so-called "split prime principle", whose
proof is independent of class �eld theory.

De�nition 1.15. Let L/K be a �nite Galois extension. Let Spl(L/K) be the set
of primes of K that are split in L.

Lemma 1.16 (split prime principle). Let L1/K,L2/K be two �nite Galois exten-
sions. TFAE.
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(1) L1 ⊃ L2.
(2) Spl(L1/K) ⊂ Spl(L2/K).
(3) For some �nite set S of primes of K, we have Spl(L1/K)−S ⊂ Spl(L2/K)−

S.

Remark 1.17. The implications (1) ⇒ (2) ⇒ (3) are elementary. In (3), we can
also replace S by a set of primes of density zero, for a suitable notion of density.

The following proposition characterizes the ray class �eld of a modulus.

Proposition 1.18. Let m be a modulus of K. The ray class �eld Km/K satis�es
the following:

(1) Let S be the set of the prime divisors of m. Then Spl(Km/K) − S ={
principal primes generated by elements of K≡1(m)

}
.

(2) For any �nite abelian extension L/K, we have L ⊂ Km if and only if
fL′/K |m.

Proof. We use the following observation: Let L/K be a �nite abelian extension. If
p is unrami�ed in L, then p is split in L if and only if (p, L/K) = 1.

(1) This follows from the admissibility of m for Km/K and the injectivity of
the Artin map Clm → Gal(Km/K).

(2) By hypothesis m is admissible for Km/K. If L ⊂ Km, it is easy to check
that m is also admissible for any L/K, hence fL/K |m. Conversely, suppose
fL/K |m, i.e. m is admissible for L/K. We prove L ⊂ Km by proving
Spl(Km/K) − S ⊂ Spl(L/K) − S. Let p ∈ Spl(Km/K) − S. By (1) we
have p = αOK , for some α ∈ K≡1(m). But then (p, L/K) = 1 since m is
admissible for L/K.

�

Remark 1.19. By Lemma 1.16, property (1) in the proposition uniquely character-
izes the extension Km/K. Obviously property (2) also uniquely characterizes Km.
We have actually proved the uniqueness of Km stated in Theorem 1.14. In practice,
we can check if a given �nite abelian extension is the ray class �eld of a modulus by
checking (1). Note that the characterization (2) can also be stated as: A modulus
m is admissible for a �nite abelian extension L/K if and only if L ⊂ Km.

Remark 1.20. The conductor of Km/K need not be equal to m in general.

Example 1.21. Take m = 1 to be the trivial modulus. Since m is admissible for
Km/K, we see that Km/K is unrami�ed everywhere. Moreover, if L/K is a �nite
abelian extension unrami�ed everywhere, then fL/K = 1. Hence by characterization
(2), L ⊂ Km. Thus Km is the maximal unrami�ed �nite abelian extension, i.e. the
Hilbert class �eld H of K. The reciprocity isomorphism in Theorem 1.14 reads:
Cl(OK)

∼−→ Gal(H/K).

Example 1.22. Take K = Q. Since Q is not totally imaginary, we need to modify
our theory slightly. Now a modulus is either a positive integerm or a formal product
of m with the symbol∞. In the former case all the de�nitions are the same. If m =
m∞, de�ne Q≡1(m) :=

{
α ∈ Q≡1(m)|α > 0

}
, ImQ := ImQ ,Clm = ImQ /Q≡1(m).We have

Clm ∼= (Z/mZ)/ {±1} ,Clm∞ = Z/mZ. Let L/Q be a �nite abelian extension, we
say m = m∞ is admissible for L/K if all the primes not dividingm are unrami�ed in
L, and the map ImQ → Gal(L/K) factors through Clm. We say m = m is admissible
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for L/K, if all the primes not dividing m are unrami�ed in L, and the place ∞ is
also unrami�ed in L (i.e. the embedding Q ↪→ R extends to an embedding L ↪→ R),
and the map ImQ → Gal(L/K) factors through Clm → Gal(L/K). Then the main

theorems 1.9, 1.13, 1.14 remain true. (In the last statement of Theorem 1.9, we
interpret "rami�ed primes" as also including ∞ if L/Q is rami�ed at ∞. )

The ray class �elds are just the cyclotomic �elds. We have Qm∞ = Q(ζm),Qm =
Q(ζm+ ζ−1m ) = Qm∞∩R. The reciprocity isomorphisms for these are just the usual
isomorphisms:

Z/mZ ∼−→ Gal(Q(ζm)/Q),

(Z/mZ)/ {±1} ∼−→ Gal(Q(ζm + ζ−1m )/Q).

Let L/Q be any �nite abelian extension. We have L ⊂ QfL/Q . This statement is
the classical Kronecker-Weber theorem.

2. Formulation using ideles

LetK be a totally imaginary number �eld. De�ne JK,∞ :=
∏
σ C×, where σ runs

through a set of representatives of the set of embeddings K ↪→ C modulo complex
conjugation. JK,∞ is a topological group with the natural product topology.

Let p be a prime ideal of OK . It gives rise to a discrete valuation vp : K× → Z,
sending α to the exponent of p appearing in the prime factorization of the fractional
ideal αOK . Choose a real number 0 < ε < 1, we de�ne an absolute value |·|p on K,

setting |α| = εvp(α) for α 6= 0 and |0| = 0. Usually we take ε = #OK/p, but this is
not essential. We can take the completion of K with respect to this absolute value,
to get a �eld Kp.

1 The discrete valuation vp extends to a discrete valuation on Kp.
De�ne Op = {α ∈ Kp|vp(α) ≥ 0}.

Consider the abelian group
∏

pK
×
p , where p runs through all the prime ideals of

OK . Consider its subgroup J∞K :=
{

(xp) ∈
∏

pK
×
p |xp ∈ O×p a.a. p

}
. Here "a.a."

means "for almost all", i.e. except for �nitely many. We can de�ne a topology on
J∞K by claiming that open sets are of the form

∏
p∈S Vp ×

∏
p/∈S O

×
p , where S is a

�nite set of primes, and Vp is an open subset of O×p (the latter equipped with the
topology de�ned by |·|p.)

Exercise 2.1. Check that this de�nes a topology on J∞K , and J∞K is a topological
group. (namely, multiplication and inversion are continuous.)

Letm = pe11 · · · p
ek
k be a modulus ofK, de�ne U∞m :=

∏
p 6|mO

×
p ×
∏k
i=1(1+peii Opi

).

This is a subgroup of J∞K . When m varies, U∞m form a basis of open neighborhoods
of 1 ∈ J∞K .

De�ne JK := JK,∞×J∞K , equipped with the product topology. It is a topological
group, called the group of ideles2 of K. We have a diagonal embedding K× ↪→ JK .
The image is a discrete subgroup, and the quotient JK/K

×, called the idele class
group, is a Hausdor� locally compact topological group.

1De�ne the distance between α, β ∈ K to be |α− β|, then Kp is just the completion of the

metric space K.
2The concept and the terminology "idèles" were introduced by Chevalley. "Idèles" was meant

to be the abbreviation of "éléments idéal"
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We have a group homomorphism

ideal : JK → IK , x = (xσ, xp) 7→
∏
p

pvp(xp).

Let L/K be a �nite Galois extension. For any prime P of L over p of K, the
�eld extension LP/Kp is �nite Galois, of degree e(P/p)f(P/p). We de�ne the
homomorphism

NL/K : J∞L → J∞K , (xP)P 7→ (
∏
P|p

NLP/Kp
xP)p.

Since K is by assumption totally imaginary, the complex embeddings of K and
those of L are in bijection. We de�ne NL/K : JL,∞ → JK,∞ to be the natural

isomorphism. Combining these two maps we de�ne NL/K : JL → JK . Let K
ab be

the maximal abelian extension of K (inside a �xed algebraic closure). We equip
Gal(Kab/K) with the pro�nite topology. The following is the main theorem of the
class �eld theory of K, formulated in the idelic language.

Theorem 2.2. There exists a canonical homomorphism ΨK : JK → Gal(Kab/K).
It is surjective and continuous, and satis�es the following.

(1) (Artin reciprocity) ΨK is trivial on the image of the diagonal embedding
K× ↪→ JK .

(2) Let L/K be a �nite abelian extension. Let ΨL/K : JK → Gal(L/K) be the

composition of ΨK with the natural map Gal(Kab/K)→ Gal(L/K). Let m
be the modulus equal to the product of the primes of K rami�ed in L. For
any x ∈ JK with ideal(x) ∈ ImK , we have ΨL/K(x) = (ideal(x), L/K).

(3) (Reciprocity isomorphism) Let L/K be a �nite abelian extension. ΨL/K

induces an isomorphism JK/K
×NL/K(JL)

∼−→ Gal(L/K).

(4) (Existence theorem) Any open subgroup of �nite index of JK/K
× arises as

the kernel of ψL/K for a unique �nite abelian extension L/K.

Remark 2.3. From (2) we easily see that ΨK : JK → Gal(Kab/K) is trivial on
JK,∞. Thus statements (1)-(3) remain true if we replace JK by J∞K . The role JK,∞
plays in the theory is that it gives the correct topology on JK for (4) to hold. In
fact, K× is dense in J∞K , so the only open subgroup of J∞K /K

× is itself, and we
don't get the analogous statement to (4) if we only work with J∞K . Moreover, when
K is not necessarily totally imaginary, we need JK,∞ to control the rami�cation of
the real embeddings.

We conclude with a discussion of the ray class �elds in the idelic language. Let m

be a modulus of K. Let Um = JK,∞×U∞m = JK,∞×
∏

p6|mO
×
p ×

∏k
i=1(1+peii Opi

). It

is a subgroup of JK . The image of Um in JK/K
× is an open subgroup of �nite index.

In fact the map ideal : JK → IK induces an isomorphism JK/K
×Um

∼−→ Clm. The
ray class �eld Jm is the �eld corresponding to the image of Um in JK/K

× via (4)
in Theorem 2.2.
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